How do companies use statistics in assessment of investment projects
Inogate 23.04.2013
Anders Dyrelund, senior market manager
Rambøll Energy Denmark
Presentation and background

- **Ramboll**
 - Independent Multidisciplinary Consultant
 - Owned by the Ramboll Foundation
 - 10,000 Employees
 - 200 offices in 25 countries
 - World leading within several energy services

- **Anders Dyrelund**
 - Civ. Eng. in buildings, Grad. diploma economy
 - 1975-81 Ramboll (BHR)
 - 1981-86 Danish Energy Agency
 - 1986- Ramboll
 - 1980 The First Heat Plan in Denmark for Aarhus, project manager
 - 1981- Copenhagen Regional DH system, task manager/consultant
 - 1990- Consultancy services to more than 20 countries mainly utilities and authorities in major cities, including Beijing, Moscow, Tallin, Riga, Vilnius, Warsaw, Bucharest, Bishkek, Eravan, London, Tokyo
 - Develop investments in DH systems, 100 million Euro per year
Content

• Experience of Ramboll in energy investment projects
• Overall energy policy and framework for assessment
• How to do it in a simple way
• Case 1: Heat plan Denmark
• Case 2: Invest in DH networks in Copenhagen
• Case 3: Invest in new peak capacity
• Case 4: How could the DH system in Copenhagen be financed?
• Case 5: Invest in waste to energy
• Case 6: Invest in CHP
• Case 7: Should the municipality guarantee for loan?
Experience of Ramboll in statistics and investment projects

- Ramboll provide consultancy services for a wide range of energy companies regarding identification and assessment of profitable investments in energy projects
 - District heating
 - Waste to energy
 - Other renewable energy
 - Power plants
 - Wind power
 - Buildings

- Ramboll has experience working in most of the former centrally planned economies
 - and is fully aware about the difficulties getting reliable data based on measurements and statistics
The overall energy policy objectives in EU

- **Reduce the fossil fuel consumption**
 - For security of supply and
 - For climate reasons

- **In a cost effective** way for the society

- **In the most sustainable** way
 - Minimizing life-cycle costs incl. environmental costs
 - Minimizing long-term costs for the local community
The energy policy sets the framework for assessment of investment projects

- The overall aim of the EU energy directives for building, RES and EE is to promote cost effective projects to increase security of supply and reduce climate emissions.

- The Danish Energy Policy is
 - to be independent of fossil fuels before 2035 within heating and electricity
 - in a cost effective way for the society taking into account environmental costs

- The national governments sets the legal framework and provide incentives through taxes and subsidies.

- The aim of any energy company is
 - to meet objectives of profit
 - same as lowest heat prices for Danish DH companies
 - by investing in profitable projects

- How to do it?
How to identify and assess investment projects?

- It is like cross country running
- You know where to end (objective of more profit)
- You need to know where you are (reliable base-line data)
- You must have good shoes and be in good shape (models etc)
- You should use experience from the previous route to assess the best route (statistics)
How to use statistics in the assessment of investment projects

- Find reliable data and statistics
- Identify and assess the best projects
- Implement Investment project
- Monitor and prepare statistics
Case 1: Fuel consumption for heat supply in Denmark - Heat Plan Denmark

• Strategic study of the heating sector in Denmark

• How much has the CO$_2$ emission in the heating sector been reduced since 1980? 30%? 60%?

• Can the heating sector be independent of fossil fuels within 2035? Yes or no

• Which projects have contributed most to reduce the emission since 1980? DH, CHP, waste to energy, gas, end-use savings?

• Which projects can contribute most to the future reduction? DH, CHP, waste to energy, biomass heat pumps, solar heating and wind? And how??
Case 1: Statistics from DEA and the Danish District Heating association do not give the full answer

How do energy companies use statistics to assess investment projects by Anders Dyrelund

Climate adjusted

Index 1990=100

Heated floor space

Final energy consumption

Final energy consumption per m²

Ramboll

How do energy companies use statistics to assess investment projects by Anders Dyrelund

Inogate 23. of April 2013
Case 1: step 1 find the market share of heating and cost effective heat savings

Heat supply of the building stock
Modest development

Historical → Projection

Source: Heat Plan Denmark, Ramboll
Case 1:

Step 2: divide DH on types of heat production

Estimated based on various sources as due to lack of statistics

Step 3: calculate fuel consumption for each type of production

Step 4: calculate CO2 emissions
Case 1: Heat Plan Denmark Result

- Proved how the CO₂ emission in the heating sector has been reduced by 60% since 1980
- Proved that DH, CHP and waste-to-energy projects have contributed most
- Indicated that the heating sector can be almost independent of fossil fuels before 2035
- Showed that DH, CHP and waste to energy plus heat pumps, solar plus more cost effective heat saving can do it
- Inspired Danish DH to prepare the statistic in more details
Case 2: Investment projects to expand the DH system in Greater Copenhagen

How do energy companies use statistics to assess investment projects by Anders Dyrelund

Inogate 23. of April 2013
Case 2: one of many projects: 300 million DKK to shift 150 GWh/a from gas to DH
Case 2: Feasibility study for increasing market share of DH based on following data:

- Digital maps including all geographic information, including landowners register
- Building register, type of building, m² heated area, type of heating, normative data for consumption to existing and new buildings (kWh/m²)
- Energy consumption data reported by all energy suppliers to the building register to calculate actual consumption in kWh/m² (new)
- Consumer data base of the gas company (confidential, but access to average consumption)
- Normative data for heat consumption in new buildings seems to be too optimistic – statistical data are needed and therefore DH companies will develop statistics
- Statistics for costs of pipes (DKK/m) and for substations and boilers (DKK/kW) a good basis for investments
Case 3: Feasibility study on need for base load capacity to meet annual demand (MWh)

- Old approach
 - Estimated production demand divided by e.g. 5,000 hours
 - Standard heat duration curve

- New approach
 - Statics based on measurements on annual production hour by hour
 - Heat duration curve for demand (hours sorted)
 - Heat duration curve for available base load production
 - Basis for simulation of actual heat production for extended new market
Case 3: Feasibility study on investment in new peak boilers to meet maximal demand (MW)

- **Old approach:**
 - normative consumption and estimates

- **General approach:**
 - demand (MW) = measured production to network (MWh) divided by standard max load hours (h)

- **Accurate approach:**
 - Statistics combining heat load and weather data from previous year
 - Estimate max load in design situation

Max hour (blue) corresponds to 3.000 hours max load
Max daily average (red) corresponds to 3.300 hours
Case 4: The DH in Greater Copenhagen

Technical data

- Production 10,000 GWh/a
- Maximal load appr. 3,000 MW
- Heat sale 8,500 MWh/a
- 60 mio. m² heated floor area
- Heat losses 15%
- More than 40 peak boilers
- **98%** connection to the DH networks in the DH zones
- **97%** of production is CHP
- **25%** of fuels are waste
- All waste heat is utilized
- Optimization by a heat market unit (CTR, VEKS and HOFOR)
- Developing in accordance with the Heat Supply Act
Case 4: The DH in Greater Copenhagen
Developing the system 1980-2010-

- Heat supply planning in 20 municipalities formed the basis for more DH and new natural grids – cost effective zoning based on assessment of investment projects.

- The regional heat supply planning formed the basis for the most cost effective regional DH grid.

- The Minister approved in 1984 two new 235 MW/330 MW CHP plants at Amager and Avedøre – Avedøre was a completely new site allocated close to the heat market in the western suburbs.

- The system is still growing – according to the Heat Supply Act
 - Cost effective shift from (large) gas boilers to district heating based on project proposals assessment of investment projects.
 - Extension of the heat transmission and more interconnections.
 - New production facilities for waste incineration, biomass CHP, peak boilers, Geothermal heat, large heat pumps, thermal storages.
Case 4: The DH in Greater Copenhagen
Funds and procurement

- 100% financed by the most competitive loans
- 100% loan guarantee by the municipalities
- No subsidies (except a few around 1980 and 1990)
- National energy policy: tax to compensate for drop in oil price

- Precondition for 100% efficient financing
 - Stable national energy policy
 - Transparent accounting and statistical data
 - Open and transparent tender for all contracts
 - Heat consumers pay only necessary costs (regulator)
 - Heat consumers (building owners) can pay for the heat
 - Cost allocation and division of costs on apartment buildings
 - Apartment owner can pay for their share
 - Poor families can get subsidies
 - Social housing
Case 5: The DH in Greater Copenhagen
Do we need more Waste-to-energy capacity?

- Vestforbrænding,
 - 2x35 t/h
 - 23% electrical
 - 95% total efficiency with flue gas condensation

- ARC (Amagerforbrænding),
 - Old units replaced by new
 - 2x35 t/h units
 - Architectural design for public acceptance – skiing loop
 - 22% electrical
 - 104% total efficiency with flue gas condensation and heat pump

- KARA/NOVEREN
 - 1x25 t/h
Case 5: Statistics show that there is a need for more capacity to reduce landfills in Europe

- Huge potential in many countries for more efficient use of waste
 - Reuse
 - Recycling of resources
 - Recycling of energy
 - Use of waste heat from incinerators through large integrated DH systems
- Markets for waste (to be treated in efficient plants)
- Markets for useful deposits (e.g. in mines to avoid landfills)
Case 5: Therefore a potential for more efficient use of waste for DH and CHP

- Large market for hot water DH at low temperature can increase the energy utilization of the waste significantly
- A heat pump can increase the condensation of heat from the wet flue gas

![Graph showing annual use of energy from one ton of waste, in MJ/ton, LHV 10.8 GJ/ton]
Case 6: Is there a market potential for CHP in Greater Copenhagen in the next 30 years

- More wind energy

- **Statistics** show fluctuating wind and prices

- More power line interconnection in Northern Europe to establish a larger power market

- **Statistics** show that there is still many condensing plants on the margin in this system

- Therefore still CHP potential, but with accumulators
Case 6: Therefore there is a CHP potential in new power generation, and therefore:

- Large scale low temperature CHP plants can reduce the fuel consumption significantly compared to boilers and heat pumps
- Heat accumulators can increase the flexibility and help the power system
- The precondition for CHP benefit is that power plants are in operation in condensing mode in the system
Case 7: Assessment of an existing DH system basis for investment and municipal guarantee

• 20 km network, 200,000 m², 1,100 consumers buildings connected, heat sale 22,000 MWh according to heat meters,

• The heat price is among the lowest 20% (Regulators statistics)

• Statistics show
 • Reliable heat supply, no complaints
 • Stable heat loss around 23% according to heat meters
 • Water losses stable around 2 m³/day
 • Less than one leak a year, plus regular thermographic inspection

• This indicates
 • that the infrastructure is in a good shape
 • that the allocated budget for maintenance is at a suitable level
 • that the municipal guarantee will be “on safe ground”
Thank you for your attention!

ad@ramboll.dk

www.ramboll.com
http://blog.ramboll.com/urbanenergysolutions/

See our climate solutions at
http://www.stateofgreen.com/Profiles/Ramboll