Electricity Network Tariffs and Benchmarking
John Swinscoe, Electricity Markets Expert
Astana, 19 June 2014
BUILDING PARTNERSHIPS FOR ENERGY SECURITY
www.inogate.org
Agenda

• Regional Tariff Study
• Electricity Network Tariffs
Tariff Review

Regional Review of Tariffs
- Focus on methodologies for Electricity and gas
- Comment on alignment with EU practices

Tariff Seminar
- Tariff methodologies
- Tariff Design
Tariff Review

- All respondents said that their tariffs are cost based
- Most use historical costs for valuing assets and use straight line depreciation
- All say that tariffs are fully cost reflective
- Most say that there are no subsidies in the tariffs
- Some (Georgia, Kazakhstan, Moldova) are contemplating incentive regulation for transmission/distribution
Commercial & Residential Electricity Tariffs in PCs
Tariffs in EU15 and PCs

EU 15 and Partner Countries (Excl. Tax)
Tariff Seminar

- Held in Budapest 29 - 31 October
- Representatives from 7 of PCs
- Covered all aspects of tariff setting:
 - OPEX, CAPX and RoA
 - Tariff design
 - Investments
 - Public Service Obligations
 - Network Access
Tariff Seminar

Positive feedback on

- Relevance
- Quality
- Organisation
EU Tariffs

• In most EU countries production and supply are established through markets
• Network tariffs remain under regulation
• Most EU countries use or plan to use incentive regulation for tariffs
Costs plus regulation

- Depreciation
- Return on Assets (RAB X WACC)
- OPEX
- Inflation

Year 1 Year 2 Year 3 Year 4 Year 5
Incentive Regulation

- Depreciation
- Return on Assets: RAB X WACC
- OPEX
- CPI
- CPI - X
- Efficient OPEX

Year 1 Year 2 Year 3 Year 4 Year 5

Regulatory Period
Incentive Regulation

€

CPI

Efficiency Target:
CPI - X

Year 2
Year 3
Year 4
Year 5

Base Year
Incentive Regulation

€

Base Year

Year 2 Year 3 Year 4 Year 5

Target

Profit

Actual
Incentive Regulation

€

Base Year

Year 2 Year 3 Year 4 Year 5

Target Actual Loss
A benchmark is:

‘A standard or point of reference against which things may be compared’

Oxford English Dictionary

However:

- *There is no standard electricity network*
- *Therefore, network companies are compared against each other and the most efficient in the selected group becomes the benchmark*
International Benchmarking

Advantages:
• *Much larger sample to improve accuracy of results*
• *Similar standards applied to interconnected systems*

Disadvantages:
• *Differences in underlying costs (Labour, Finance etc)*
• *Differences in reporting regulation, tax etc. creates difficulties in comparing accounts*
• *Physical differences (terrain, climate etc) make direct comparisons difficult*
• *Differences in historical investment in maintenance and repair may distort costs.*
International Benchmarking

Cost drivers:
• Maximum Demand
• Length of overhead wires
• Length of underground cables
• Number of transformers
• Number of customers
• Connection density
• Reliability
International Benchmarking

Comparison of results of different benchmark models:

<table>
<thead>
<tr>
<th></th>
<th>DEA-1CRS</th>
<th>DEA-1VRS</th>
<th>DEA-2CRS</th>
<th>DEA-2VRS</th>
<th>COLS-1LL</th>
<th>COLS-1TL</th>
<th>SFA-1LL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSO 1</td>
<td>60.50%</td>
<td>100%</td>
<td>70.50%</td>
<td>100.00%</td>
<td>62.10%</td>
<td>69.90%</td>
<td>68.30%</td>
</tr>
<tr>
<td>DSO 2</td>
<td>50.40%</td>
<td>85.20%</td>
<td>49.30%</td>
<td>94.10%</td>
<td>55.10%</td>
<td>59.60%</td>
<td>60.00%</td>
</tr>
<tr>
<td>DSO 3</td>
<td>43.20%</td>
<td>76.80%</td>
<td>79.10%</td>
<td>100.00%</td>
<td>46.70%</td>
<td>49.70%</td>
<td>47.70%</td>
</tr>
<tr>
<td>DSO 4</td>
<td>50.40%</td>
<td>77.50%</td>
<td>48.30%</td>
<td>75.90%</td>
<td>54.60%</td>
<td>57.90%</td>
<td>59.10%</td>
</tr>
<tr>
<td>DSO 5</td>
<td>58.10%</td>
<td>98.30%</td>
<td>56.20%</td>
<td>100.00%</td>
<td>63.80%</td>
<td>68.50%</td>
<td>69.20%</td>
</tr>
<tr>
<td>DSO 6</td>
<td>49.50%</td>
<td>70.30%</td>
<td>40.90%</td>
<td>85.70%</td>
<td>51.00%</td>
<td>55.40%</td>
<td>55.30%</td>
</tr>
<tr>
<td>DSO 7</td>
<td>34.60%</td>
<td>55.40%</td>
<td>51.80%</td>
<td>97.80%</td>
<td>36.80%</td>
<td>39.80%</td>
<td>39.90%</td>
</tr>
<tr>
<td>DSO 8</td>
<td>65.80%</td>
<td>100%</td>
<td>87.60%</td>
<td>100.00%</td>
<td>68.50%</td>
<td>73.60%</td>
<td>73.00%</td>
</tr>
<tr>
<td>DSO 9</td>
<td>58.50%</td>
<td>100%</td>
<td>87.40%</td>
<td>100.00%</td>
<td>64.10%</td>
<td>69.20%</td>
<td>69.70%</td>
</tr>
<tr>
<td>DSO 10</td>
<td>35.10%</td>
<td>48.40%</td>
<td>38.10%</td>
<td>82.70%</td>
<td>37.10%</td>
<td>39.10%</td>
<td>39.90%</td>
</tr>
<tr>
<td>DSO 11</td>
<td>60.50%</td>
<td>83.40%</td>
<td>56.60%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>71.50%</td>
<td>98.30%</td>
</tr>
<tr>
<td>DSO 12</td>
<td>100%</td>
<td>100%</td>
<td>35.10%</td>
<td>38.70%</td>
<td>91.60%</td>
<td>89.80%</td>
<td>100.00%</td>
</tr>
<tr>
<td>DSO 13</td>
<td>88.10%</td>
<td>94.80%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>97.40%</td>
<td>62.50%</td>
<td>86.50%</td>
</tr>
<tr>
<td>DSO 14</td>
<td>100%</td>
<td>100%</td>
<td>100.00%</td>
<td>100.00%</td>
<td>82.90%</td>
<td>100.00%</td>
<td>82.10%</td>
</tr>
</tbody>
</table>

Source: International Utility Benchmarking & Regulation: An Application to European Electricity Distribution Companies

Department of Applied Economics, University of Cambridge
Cost elements of the electricity transmission tariffs in Central and Eastern European EU countries (in €/MWh)

Source: ENTSO-E 2012
Conclusions

• No longer widely used in transmission
 – Sample too small
 – Cost distortions caused by support for RES

• Used in distribution networks
 – Large sample size
 – Choice of the most relevant cost drivers not always obvious
 – Choice of model is important (DEA most common)
 – Used as a confidence test on tariffs rather than as a tariff setting methodology
Demand can be difficult to predict...

England Vs Germany 1990, World Cup Semi-Final, Kick Off 19:00

- 1600 MW Half time
- 1600 MW Full time
- 300 MW End of Extra time
- 2800 MW Following penalty shoot-out and end of TV transmission