INOGATE Meeting 2015-12-17
Energy optimization
AGENDA

- THE OPTIMIZATION METHOD
- A CASE STUDY –LYNGBY PORT
TOTAL CONCEPT

A method for reduction of energy consumption in existing non-residential buildings.

Goal: achieve max saving in a cost efficient way

Mere info: www.totalconcept.info
TOTAL CONCEPT – 3 STEPS

Trin 1 – audit and action package

Trin 2 – carrying out the measurements

Trin 3 – follow up

STEP 1
- Creating the action package
 - Information gathering and compiling data
 - Energy calculations
 - Investment cost estimations
 - Profitability calculations and the creation of an action package
 - Reporting and presentation of proposals

STEP 2
- Carrying out the measures
 - Designing the measures
 - Construction work and installations
 - Functional performance checks

STEP 3
- Following up
 - Measuring energy use after renovation
 - Checking profitability results
TOTAL CONCEPT
HOW TO CREATE AN “ACTION PACKAGE”?

Internal rate of return diagram

Annual savings k€/a

Internal rate of return r_i

Calculation period
20 years

Investment k€
TOTAL CONCEPT
HOW TO CREATE AN “ACTION PACKAGE”?

Internal rate of return diagram

Annual savings k€/a

- $r = 25\%$
- $r = 20\%$
- $r = 15\%$
- $r = 12\%$
- $r = 10\%$
- $r = 8\%$
- $r = 6\%$
- $r = 4\%$

Calculation period 20 years

Investment k€
TOTAL CONCEPT
HOW TO CREATE AN “ACTION PACKAGE”?

Annual savings k€/a

Investment k€

Internal rate of return r_i

Calculation period
20 years

$ r = 25\% $
$ r = 20\% $
$ r = 15\% $
$ r = 12\% $
$ r = 10\% $
$ r = 8\% $
$ r = 6\% $
$ r = 4\% $
TOTAL CONCEPT
HOW TO CREATE AN “ACTION PACKAGE”?

Annual savings
k€/a

Investment k€

Internal rate of return r_i

Profitability

Demand 5%

7% - 2% = 5%
CASE STUDY - LYNGBÝ PORT

CASE STUDY - LYNGBY PORT IES AS A MODELLING TOOL
CASE STUDY - LYNGBY PORTIES AS A MODELLING TOOL
CASE STUDY - LYNGBY PORT
MEASURED ENERGY CONSUMPTION

<table>
<thead>
<tr>
<th></th>
<th>Energy use 2014</th>
<th>Energy certification 2010</th>
<th>Energy use 2013</th>
<th>Simulations</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI "small power"</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>522</td>
</tr>
<tr>
<td>EI (common, incl. ventilation and cooling)</td>
<td>478</td>
<td>582</td>
<td>337</td>
<td>343</td>
</tr>
<tr>
<td>Gas</td>
<td>1345</td>
<td>1368</td>
<td>1692</td>
<td>1683</td>
</tr>
</tbody>
</table>
CASE STUDY - LYNGBY PORT
CASE 0, CALCULATION RESULTS
• Heating constitutes for 66% of energy consumption but only for 44% of energy cost. 34% of electricity consumption generates 56% of energy costs. Electricity consumption includes also estimated tenancy energy consumption for lighting and equipment. **125kr/m²**

• Heating cost: 0,65DKK/kWh

• Electricity cost: 1,65DKK/kWh
CASE STUDY - LYNGBY PORT

DEFINITION OF BASE CASE

Ambition level:
- Indoor climate
- Standard renovation (overworn elements)
- Extra requirements (e.g., 20% more working places, better daylight)

CASE "0"
(existing building)

Indoor climate class A
20% more work stations

Indoor climate class B
0% more work stations

Indoor climate class C
Standard renovation: windows
15% more work stations
CASE STUDY - LYNGBY PORT
SELECTION OF BASE CASE

CASE 0 (1,1/1,4mio kr)

BASELINE (1,1/1,9mio kr)

BASELINE 17 (1,0/1,8mio kr)
LYNGBY PORT
MEASURE B1 – DISTRICT HEATING

• Conversion of natural gas boilers to district heating.
• Calculation using factors, given by Lyngby-Taarbæk municipality

• Price: 150.000kr
• Improvements: price (0,65kr/kWh -> 0,55kr/kWh); efficiency 84%->95%
• Annual saving: 390MWh
LYNGBY PORT
MEASURE B2 – PHOTOVOLTAIC

- Price: 1.750.000kr
- 1090 m2
- Improvements: production of electricity
- Annual saving: 281MWh
MEASURE B3 – NEW COOLING MACHINE

- Price: 2,200,000kr
- Improvements: COP 2,5 → 4,1
- Annual saving: 81MWh
MEASURE B4 – NEW VENTILATORS

- Price: 570,000 kr
- Improvements: Reduction of pressure 200-250 Pa because of removing high velocity in outlier. Better efficiencies, more rotations
- Annual saving: 301 MWh
MEASURE B5 – PIR SENSORS IN TOILETS

- Price: 70,500kr (47 toilet cores)
- Improvements: 15% reduction in energy consumption for toilet lighting
- Annual saving: 3MWh
MEASURE B6 – NEW BMS SYSTEM

- New central BMS panel and controls: kr. 250,000
- BMS for existing ventilation units: kr. 250,000
- Office rooms (5 setpoints per room, 68 A-rooms): kr. 1,750,000
- **Total**: kr. 2,250,000.

- Annual saving: 161MWh heating + 116MWh common el
MEASURE B7 – NEW WINDOWS

Existing:

- $U_w = 2.5 \text{ W/m}^2\text{K}$
- $g_g = 0.7$
- $LT = 0.71$

Table

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Alt.</th>
<th>Type</th>
<th>A_{ntal}</th>
<th>A_w</th>
<th>A</th>
<th>U_w</th>
<th>F_r^*</th>
<th>g_g^*</th>
<th>L_T^*</th>
<th>B_w^{**}</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Type 1</td>
<td>887</td>
<td>1.20</td>
<td>1064.40</td>
<td>0.88</td>
<td>0.81</td>
<td>0.51</td>
<td>0.71</td>
<td>1.6</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Type 2</td>
<td>7</td>
<td>0.64</td>
<td>4.48</td>
<td>1.00</td>
<td>0.74</td>
<td>0.51</td>
<td>0.71</td>
<td>-16.2</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Type 3</td>
<td>25</td>
<td>0.33</td>
<td>8.19</td>
<td>1.07</td>
<td>0.71</td>
<td>0.51</td>
<td>0.71</td>
<td>-25.6</td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>Type 4</td>
<td>22</td>
<td>3.56</td>
<td>87.12</td>
<td>0.79</td>
<td>0.89</td>
<td>0.48</td>
<td>0.69</td>
<td>12.5</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>Type 5</td>
<td>73</td>
<td>1.80</td>
<td>121.40</td>
<td>0.83</td>
<td>0.84</td>
<td>0.51</td>
<td>0.71</td>
<td>9.1</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>Type 6</td>
<td>8</td>
<td>0.60</td>
<td>4.80</td>
<td>1.03</td>
<td>0.73</td>
<td>0.51</td>
<td>0.71</td>
<td>-20.0</td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>Type 7</td>
<td>12</td>
<td>2.60</td>
<td>31.20</td>
<td>0.86</td>
<td>0.85</td>
<td>0.48</td>
<td>0.69</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Total:

- 1034 m^2
- 1331.59 m^2
- 0.87 **

- **Price:** 14,3 mio kr
- **Improvements:** Better U-value, lower g-value
- **Annual saving:** 370MWh
Internal rate of return diagram

- Conversion to district heating
- New ventilators
- Insulating ventilation ducts in shafts
- Optimization of BMS system
- New cooling system
- PIR sensors in toilets
- New windows

Annual savings [kdkk]

Investment [kdkk]
The energy saving for the package that fulfills the owner internal rate of return is 20% for heating and 23% for electricity. For the package with 8 measures it is respectively 44 and 23%.