Introduction

Range of validity
The present user manual applies to the meter specified on the title page.

Purpose
The user manual contains all the information required for application of the meters for the intended purpose. This includes:

- Provision of knowledge concerning characteristics, construction and function of the meter
- Information about possible dangers, their consequences and measures to prevent any danger
- Details concerning the performance of all work throughout the service life of the meter

Target group
The contents of this user manual are intended for technically qualified personnel of energy supply companies responsible for the meter planning, installation, operation and maintenance of the meter.

Hexing Electrical reserves the right of final interpretation
TABLE OF CONTENTS

INTRODUCTION ... 2

1. **OVERVIEW .. 5
 1.1 FRONT VIEW .. 5
 1.2 HIGHLIGHTS .. 5
 1.3 PRINCIPLE OF OPERATION ... 6
 1.4 BASIC PARAMETERS .. 6
 1.5 STANDARDS .. 7

2. **MAIN FUNCTIONS .. 8
 2.1 MEASUREMENT .. 8
 2.1.1 Energy ... 8
 2.1.2 Instantaneous Values .. 9
 2.1.3 Billing Data .. 9
 2.2 LCD DISPLAY .. 9
 2.2.1 Physical Characteristics ... 9
 2.2.2 LCD Full Screen Display .. 10
 2.2.3 LCD Display Items ... 10
 2.2.4 LCD Display Modes .. 11
 2.2.5 Status Indicator .. 11
 2.3 COMMUNICATION INTERFACES .. 12
 2.3.1 Optical Communication ... 12
 2.3.2 GPRS Communication .. 12
 2.4 KEYPAD .. 13
 2.5 STS ... 13
 2.5.1 Recharge ... 13
 2.5.2 Management TOKEN .. 14
 2.5.3 Modify Security Key .. 15
 2.5.4 Test TOKEN ... 16
 2.6 SHORT CUT KEYS .. 17
 2.7 LOW CREDIT ALARM .. 18
 2.8 EMERGENCY CREDIT .. 19
 2.9 FRIENDLY MODE ... 20
 2.10 SMS RECHARGE .. 20
 2.10.1 Input TOKEN number .. 20
 2.10.2 Input Shortcut Key ... 20
 2.10.3 SMS Alarm ... 21
 2.10.4 Mobile Phone Number Binding .. 21
 2.11 LOAD CONTROL .. 21
 2.12 EVENT RECORDS ... 22
 2.12.1 Event Type 1 .. 22
 2.12.2 Event Type 2 .. 22
 2.12.3 Event Type 3 .. 22
 2.12.4 Event Type 4 .. 22
2.12.5 Event Type 5
2.12.6 Event Type 6
2.13 LOAD PROFILE
2.14 DAYLIGHT SAVING TIME
2.15 CONTACTOR
2.15.1 Control Logic
2.15.2 Reason of Operation
2.16 RTC
2.17 BATTERY

3. DIMENSIONS AND INSTALLATION

3.1 DIMENSIONS
3.1.1 Outline Drawing
3.1.2 Terminal Block Drawing
3.2 CONNECTION DIAGRAM
3.3 INSTALLATION REQUIREMENTS

4. STORAGE AND TRANSPORTATION

ANNEX A
1. Overview

HXE34-KP three phase four wire prepaid keypad meter is designed for the purpose of prepayment. Its main functions include energy measurement, data display, communication, prepayment, contactor control, keypad input and inquiry, anti-tampering, etc.

1.1 Front View

1.2 Highlights

- Prepayment mode solves the problem of difficult collection of electricity fee.
- Based on STS (Standard Transfer Specification), which is an open secure transfer standard and the only international specification on prepaid system.
- DLMS/COSEM Communication protocol, which ensures good interoperability.
- Closed type design avoids external attack through open interface.
- Human machine interface available: keypad input and LCD display.
- Recharge information is transferred in the form of TOKEN.
- Built-in contactor is for controlling external circuit breaker, and varied control methods are supported.
- Pluggable GPRS module supports remote communication.
- Some basic queries and easy operation can be done via keypad.
- Rich event records.
- Support logoff of meter, and the credit in meter can be returned to customer.

1.3 Principle of Operation

HXE34-KP comprises of following components:

- Energy measuring unit: voltage sampling, current sampling, measuring integrated circuit;
- Data processing unit: MCU, memory;
- Power supply unit: AC power supply, battery;
- Input/output unit: LCD display, GPRS communication, optical port, keypad;
- Load control unit: contactor.

1.4 Basic Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristics</th>
</tr>
</thead>
</table>

![Diagram of HXE34-KP components](image)
Reference voltage
- 3*220/380VAC—CT
- 3*57.7/100VAC—CTPT

Working voltage
- 70% Un ~ 120% Un

Frequency
- (50±5)Hz

Current
- 5(6)A

Accuracy
- Cl 1.0 for kWh
- Cl2.0 for kvarh

Starting current
- 4‰Ib

Impulse constant
- Active: 10000 imp/kWh
- Reactive: 10000 imp/kvarh

Working temperature
- Normal working temperature: -25℃ ~ +60℃
- Extreme working temperature: -40℃ ~ +70℃

Relative humidity
- ≤ 95%

Power consumption in voltage circuit
- ≤ 1.5W, 10VA

Power consumption in current circuit
- ≤ 1VA

Degrees of protection
- IP54

Fast transient burst
- 4kV

Electrostatic discharges
- Contact discharge 8kV, air discharge 15kV

Insulation
- 1 minute under 4kV, 50Hz

Impulse voltage
- 8 kV

1.5 Standards

<table>
<thead>
<tr>
<th>Standards</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC62052-11</td>
<td>Electricity metering equipment (a.c.) – General requirements, tests and test conditions – Part 11: Metering equipment</td>
</tr>
<tr>
<td>IEC62053-21</td>
<td>Electricity metering equipment (a.c.) - Particular requirements -</td>
</tr>
</tbody>
</table>
2. Main Functions

2.1 Measurement

2.1.1 Energy

- The meter measures both forward and reverse active energy in the range of 000000.00~999999.99kWh.
• The meter measures both forward and reverse reactive energy in the range of 000000.00~999999.99kWh.

2.1.2 Instantaneous Values
• Active power (phase A, phase B, phase C)
• Reactive power (phase A, phase B, phase C)
• Apparent power (phase A, phase B, phase C)
• Voltage (phase A, phase B, phase C)
• Current (phase A, phase B, phase C)
• Power factor (phase A, phase B, phase C)
• Frequency
• AB phase angle, AC phase angle

2.1.3 Billing Data
• Monthly frozen energy: last 12 months data of monthly frozen occurrence time, total active energy, total reverse active energy.
• Daily frozen energy: last 62 days data of daily frozen occurrence time, total active energy, total reverse active energy.
• Monthly frozen credit: last 12 months data of monthly frozen occurrence time, remaining credit.
• Daily frozen credit: last 62 days data of daily frozen occurrence time, remaining credit.

Monthly frozen time is configurable in the format of XX(day):XX(hour) from 1st to 28th of every month. The default setting is 1st day 00 hour. Daily frozen time is configurable in the format of XX(hour):XX(minute). The default setting is 00:00.

2.2 LCD Display

2.2.1 Physical Characteristics
• Visual size of LCD: 67.5mm*21mm;
• Size of digit: 4.3mm*8.4mm;
- Working temperature of LCD: -30°C ~ +80°C;
- High-contrast;
- Wide viewing angle;
- Anti-ultraviolet.

2.2.2 LCD Full Screen Display

2.2.3 LCD Display Items

<table>
<thead>
<tr>
<th>Display item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000:00:00</td>
<td>Data display area</td>
</tr>
<tr>
<td>0.8.8.8</td>
<td>OBIS code display area</td>
</tr>
<tr>
<td>CREDIT</td>
<td>Unit display area</td>
</tr>
<tr>
<td>kWArhz</td>
<td>Community</td>
</tr>
<tr>
<td></td>
<td>Reverse indication</td>
</tr>
<tr>
<td></td>
<td>Low battery</td>
</tr>
<tr>
<td></td>
<td>Contactor connected</td>
</tr>
<tr>
<td></td>
<td>Contactor disconnected</td>
</tr>
<tr>
<td></td>
<td>Recharge successful</td>
</tr>
<tr>
<td></td>
<td>Recharge failed</td>
</tr>
<tr>
<td></td>
<td>GPRS signal</td>
</tr>
<tr>
<td>▼ (S1~S8)</td>
<td>Event status indicator</td>
</tr>
</tbody>
</table>
2.2.4 LCD Display Modes

There are five types of LCD display modes: automatic scrolling display, push button display, keypad display, power off display, and meter abnormal display.

- **Automatic scrolling display**
 Meter display mode is default as automatic scrolling display when power on. After meter operates for a certain period, which is automatic scrolling display interval default as 3s, LCD display will switch automatically to next page in sequential order circularly. Maximum 32 display pages can be configured, for details please refer to Annex A.

- **Push button display**
 Once press the button in the front, automatic scrolling display/power off display will switch to push button display. LCD display switches to next page in sequential order circularly at each button-push. When there is no button-push within 30s, push button display will switch back to automatic scrolling display/power off display. Maximum 32 display pages can be configured, for details please refer to Annex A.

- **Keypad display**
 When press the numbers in the keypad, the meter will enter keypad display mode and display relevant numbers in LCD. If there is no keypad operation after 20s, the meter goes back to automatic scrolling display mode(when there is power in the grid) or power-off display mode(when there is no power in the grid). When pressing effective shortcut key or TOKEN and press ENTER key, the meter will display relevant indicating message. After 10s it will go back to automatic scrolling display mode(when there is power in the grid) or power-off display mode(when there is no power in the grid).

- **Power off display**
 Meter only displays credit of meter during power off.

- **Meter abnormal display**
 Once fault or damage of meter memory is detected, automatic scrolling display will stop and LCD will be fixed to display abnormal code “Error”.

2.2.5 Status Indicator

- When meter cover is open, ▼S2 indicates;
- When terminal cover is open, ▼S3 indicates;
- When meter is overloaded, ▼S4 indicates;
- **When meter cover open and terminal cover detection function is disabled, ▼S5 indicates**;
- When meter is three-phase unbalance, ▼S6 indicates (3-phase meter only).
2.3 Communication Interfaces

Meter has one optical communication port, and one GPRS communication port. The two communication interfaces are independent from each other, thus, failure of one communication interface will not affect the other.

2.3.1 Optical Communication

- It is in compliance with IEC 62056-21 standard: Electricity metering - Data exchange for meter reading, tariff and load control - Part 21: Direct local data exchange.
- It is in compliance with DLMS standard (E mode).
- Initial baud rate is 300bps, 7 data bits and 1 parity bit; after successful handshake, baud rate is 9600bps, 8 data bits and 1 parity bit.
- Via optical communication user can read data from meter and do configuration through PC software or HHU.

2.3.2 GPRS Communication

- Baud rate is 4800bps, 8 data digits and 1 parity digit.
- It is in compliance with DLMS standard (COSEM-on-IP mode). The master station could read meter data and configure meter.
- Meter reading and configuration can be realized through DCU via GPRS communication in AMI network.
- GPRS and GSM communication methods.
- Pluggable GPRS communication module.
- GPRS signal strength indicator:
- : signal strength<9, means there is no signal
- : 9<= signal strength<14, means signal is weak
- : 14<= signal strength <19, means signal is normal
- : 19<= signal strength <23, means signal is good
- : 23<= signal strength, means signal is very good

2.4 Keypad

There are totally 12 keys in this keypad. 0~9 are number keys, “ ” is clear key, “ ” is ENTER key.

2.5 STS

2.5.1 Recharge
- Customer goes to the vending station to purchase electricity and gets a customer card for the first purchase.
- Customer enters 20-digit TOKEN via keypad. If the input is wrong, it could be modified by . Push after confirmation.
- When the recharge is successful, meter displays
When TOKEN is wrong, meter displays

When TOKEN has been used, meter displays

When TOKEN expires, meter displays

When security key expires, meter displays

When charging amount exceeds the accumulated charging amount limit, meter displays

2.5.2 Management TOKEN

STA encryption is adopted for this type of TOKEN. They can only be used for one specific meter at one time.

Set maximum power
- Set 3-phase unbalance

- Clear meter credit
- Clear event status
- Switch from prepayment mode to post-payment mode
- Switch mode from post payment mode to prepayment mode

2.5.3 Modify Security Key

Two management TOKEN should be input together to modify security key. It doesn’t matter which one is input first. But after user inputs the first TOKEN, he/she shall input the second TOKEN within specified period (2min by default). Otherwise, the first one will become invalid.

Input the first TOKEN:

Input the second TOKEN, and security key is modified successfully.
2.5.4 Test TOKEN
This type of TOKEN is not encrypted by STA. It could be used to test any prepayment keypad meter which is compliant with STS.

- Contactor test
 0000-0000-0001-5099-7584
 If the contactor is connected, test disconnecting. If contactor is disconnected, test connecting. Contact goes back to initial status after 2 minutes.
 NOTE: If the credit balance is <=0, connecting contactor shall not be tested.

- LCD test
 0000-0000-0001-6777-4880
 Test LCD full screen display, check if any code is absent.

- Display total active forward energy
 0000-0000-0002-0132-8896
- Display security key version
 1844-6744-0738-4377-2416
- Display tariff index
 3689-3488-1475-5332-2496
- Display maximum power
 0000-0000-0012-0797-4400
- Display meter status
 0000-0000-0022-8172-8512
- Display instantaneous power
 0000-0000-0044-2920-8064
- Display meter version No.
 0000-0000-0087-2419-5840
- Display 3-phase unbalance
 0000-0000-0173-1410-5857
Complete test
5649-3153-7254-5031-3471
Make contactor test, LCD display test, display total active forward energy test, display security key version test, and display tariff index display in turn. The interval between each test shall be 8s~10s.

2.6 Short cut Keys

The meter provides a serial of shortcut code for customer to get meter information and make relevant operation thru the keypad:

<table>
<thead>
<tr>
<th>Short code</th>
<th>Function</th>
<th>Short code</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>Total active forward energy</td>
<td>801</td>
<td>Credit balance</td>
</tr>
<tr>
<td>802</td>
<td>Date</td>
<td>803</td>
<td>Time</td>
</tr>
<tr>
<td>804</td>
<td>Meter serial number</td>
<td>805</td>
<td>SGC number</td>
</tr>
<tr>
<td>806</td>
<td>Contactor operation reason</td>
<td>807</td>
<td>Meter status</td>
</tr>
<tr>
<td>808</td>
<td>Total instantaneous power</td>
<td>809</td>
<td>Tariff index</td>
</tr>
<tr>
<td>810</td>
<td>Overdraft limit</td>
<td>811</td>
<td>Emergency credit</td>
</tr>
<tr>
<td>812</td>
<td>Cancel audible alarm</td>
<td>813</td>
<td>Total active energy of yesterday</td>
</tr>
<tr>
<td>814</td>
<td>Total active energy of current month</td>
<td>815</td>
<td>Last recharge date</td>
</tr>
<tr>
<td>816</td>
<td>Last recharge time</td>
<td>817</td>
<td>Last recharge amount</td>
</tr>
<tr>
<td>818</td>
<td>Return logoff TOKEN</td>
<td>819</td>
<td>Power off times</td>
</tr>
<tr>
<td>820</td>
<td>Total active energy of last1 month</td>
<td>821</td>
<td>Total active energy of last2 month</td>
</tr>
<tr>
<td>822</td>
<td>Total active energy of last3 month</td>
<td>823</td>
<td>Total active energy of last4 month</td>
</tr>
<tr>
<td>824</td>
<td>Total active energy of last5 month</td>
<td>825</td>
<td>Total active energy of last6 month</td>
</tr>
<tr>
<td>830</td>
<td>TOKEN number of last 1 recharge</td>
<td>831</td>
<td>TOKEN code of last 2 recharge</td>
</tr>
<tr>
<td>832</td>
<td>TOKEN number of last 3 recharge</td>
<td>833</td>
<td>TOKEN code of last 4 recharge</td>
</tr>
<tr>
<td>834</td>
<td>TOKEN number of last 5 recharge</td>
<td>835</td>
<td>TOKEN code of last 6 recharge</td>
</tr>
</tbody>
</table>
2.7 Low Credit Alarm

In order to remind the user to recharge in time and to avoid inconvenience of power disconnection, meter provides the function of low credit alarm, including visual alarm and audible alarm.

Visual alarm:
- When there is enough remaining credit, LED is green.
- When remaining credit is less than low credit alarm level 1, LED is red.
- When remaining credit is less than low credit alarm level 2, LED is red and flashes.

Audible alarm:
When remaining credit is less than low credit alarm level 3, buzzer is on. Customer can turn off the buzzer through manual token insertion. In consideration of not disturbing customer during rest time, audible alarm turns off automatically during 20:00-08:00.
- Cancel audible alarm

● no need to cancel audible alarm now
2.8 Emergency Credit

Contactor disconnects automatically and there is no power supply when remaining credit reaches zero. However, in case that customer needs power supply and cannot go to purchase power immediately, meter provides the function of emergency credit. Customer can use short code 811 to get emergency credit and restore the power.

Under the mode of emergency credit, meter calculates the remaining credit as a minus value. When remaining credit plus emergency credit reaches zero, contactor disconnects again. Function of emergency credit can only be used once before next recharge. The emergency credit will be deducted automatically during next recharge.

- Emergency credit

- Emergency credit has been used:

- No need to use emergency credit now:

- The meter is still lack of credit after emergency credit:

- Emergency credit could not be used because the account has been closed.
2.9 Friendly Mode

Meter provides two modes of power interruption: normal power interruption and friendly mode. Under the mode of normal power interruption, contactor disconnects when remaining credit reaches zero. However, under friendly mode, in order to ensure consumer’s power consumption, contactor doesn’t disconnect during certain periods, i.e. overnights, at weekends or holidays, even if remaining credit reaches zero. Certain periods are configurable.

2.10 SMS Recharge

2.10.1 Input TOKEN number

2.10.1.1 Input Format

P + 20-digit TOEKN number, such as 1122344556677889900.

2.10.1.2 Output Format

- Charging code successful

 Yüklenmişdirxxxx.xx Manat, Balansxxxx.xx Manat

- TOKEN code failed

 Etibarsız şifrə

2.10.1.3 SMS Charging

- The customer gets 20 digits TOKEN from the utility.
- Edit SMS in mobile phone, the format is P + 20-digit TOKEN, then send the SMS to the SIM card number of corresponding meter.
- Meter will reply recharging SMS to customer’s mobile phone.

2.10.2 Input Shortcut Key

2.10.2.1 Input Format

Q + shortcut key, such as input Q800 to check total active energy.
2.10.2.2 Output Format

- total active energy
 Cəmi aktiv enerji xxxxxx.xxkVts.

- total active energy of last 1~6 month
 Əvvəlki 1/2/3/4/5/6 ayın cəmi aktiv enerjisixxxxx.xxkVts.

- meter credit balance
 Balansdakı qalıq xxxxx.xx Manat.

- Shortcut Key failed
 Yanlış şifra.

2.10.3 SMS Alarm

2.10.3.1 Credit Alarm

When the meter’s credit balance is less than 1, the meter will initially send one SMS to user’s mobile phone to remind him to recharge in time.

2.10.4 Mobile Phone Number Binding

- Input format: B+ meter serial number +*mobile phone number that need binding
- binding failed: Mobil qeydiyyat alənmadı.
- binding successful: Mobil qeydiyyat uğurlu oldu.

2.11 Load Control

- When active power is larger than threshold A and for a consecutive period which exceeds delay time B, contactor disconnects.

- Then, after delay time C, contactor reconnects and meter starts over the process of overload detection.

- If there are overload events for consecutive 5 times, times of overload events is reset to zero and contactor reconnects after delay time D. Then, meter starts over the process of overload detection.

- If there is no overload event for consecutive time E, times of overload events is reset to zero.

NOTE: during the load control process, if there is any power on and power off event, setting of max. power, or clearing events, the load control will go back to initial status and restart.
2.12 Event Records

2.12.1 Event Type 1
Meter records total occurrence times of events, total duration, start time and end time of last 10 events.

- power off
- meter cover open
- terminal cover open
- over-voltage in phase A, B and C
- under-voltage in phase A, B and C
- 3-phase unbalance
- Neutral line missing

2.12.2 Event Type 2
Meter records total occurrence times of events, recharge time, recharge amount and recharge TOKEN of last 10 events.

- Recharge event

2.12.3 Event Type 3
Meter records total occurrence times of events, occurrence time and reason of last 10 events.

- contactor disconnected
- contactor reconnected

2.12.4 Event Type 4
Meter records total occurrence times of events, time before synchronization and time after synchronization of last 10 events.

- time synchronization

2.12.5 Event Type 5
Meter records total occurrence times of events and occurring time of last 10 events.

- overload

2.12.6 Event Type 6
Meter records total occurrence times of events, occurring time of last 10 events, subclass of management TOKEN, and management TOKEN.
2.13 Load Profile

- 8 channels
- The beginning address and storage space is set in the factory. It can’t be changed after leaving factory.
- The capture period and capture objects of each channel is configurable.
- Max. 10 capture objects can be selected for each channel. And for easy reading purpose, the first capture object shall be fixed as time.
- Capture objects: time, forward active energy, reverse active energy, forward reactive energy, reverse reactive energy, voltage, current, active power, reactive power, apparent power, power factor, frequency, meter credit balance.
- Storage space: 4M bytes ForFlash.

2.14 Daylight Saving Time

- Max. 20 years’ DST setting is supported;
- After entering DST, meter’s time is 1 hour ahead, vice versa.

2.15 Contactor

2.15.1 Control Logic

- Prepaid control at local;
- Remote contactor control;
- Priority: Remote > local. Once the meter receives remote command of disconnection, contactor must disconnect, even though the meter still has credit; once the meter receives remote command of connection, contactor must connect, even though the meter doesn’t have credit.

2.15.2 Reason of Operation

- 00: Normal status
- 01: Credit reaches zero, emergency credit has not been used
- 02: Credit reaches zero, emergency credit has been used
- 03: Overload and contactor disconnect
- 04: STS test disconnection
2.16 RTC

- Calendar, time and leap year switch available;
- MCU internal RTC module, with 32768Hz crystal as clock source;
- Frequency correction to 32768 required;
- Accuracy 0.5 s/d under normal temperature.

2.17 Battery

- Lithium battery, the capacity is 1200 mAh.
- When power off, meter starts to use battery to maintain RTC, LCD display, button operation and event recording.
- When low battery is detected, LCD displays \[\text{\text{ Borders}}\].
- Lifetime is from 3~5 years, if meter works only with battery constantly.
- Battery is replaceable. User can only replace battery when the power is off. If battery must be replaced during power on, the user shall be extremely careful and not get shocked.
- It is highly recommended to replace battery within 1 minute when power on or synchronize RTC after battery replacement.
3. Dimensions and Installation

3.1 Dimensions

Length \times \text{width} \times \text{height} = 277\text{mm} \times 175\text{mm} \times 89\text{mm}

3.1.1 Outline Drawing
3.1.2 Terminal Block Drawing

3.2 Connection Diagram

CT connection:
3.3 Installation Requirements

The prepaid keypad meter should be installed correctly as this could determine the meter functionality and lifespan. Please follow the prescribed procedures carefully.

When selecting a suitable position for the meter, the following should be considered:

- Security (indoors or outdoors) against tampering.
- General safety consideration in case of possible electric shock, fire, etc.
- For safety consideration, and avoid damage to the meter, install the meter where is far away from any water tap.
- Keep the energy meter away from a stove or heater, or any compliance which will produce
heating exceeds meter’s limited heat withstand.

- Keypad of the meter should be accessible by user.
- The meter should be installed in a dry ventilated place to ensure the installation and use of meter is secure and reliable. At places that are dirty or might damage the meter, a protection cabinet or box shall be used to protect the meter.
- The meter should be fixed in a firm, fire-resistant surface that do not shake easily.

NOTE Make sure to disconnect the power of the power network before installing the meter.

4. Storage and transportation

Meters should be stored under temperature -25°C ~ +60°C, the humidity is <85%. The meter should not be crashed during transportation and storage.

Annex A

<table>
<thead>
<tr>
<th>Display item</th>
<th>OBIS</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total active energy</td>
<td>1.8.0</td>
<td>XXXXXXX.XX</td>
</tr>
<tr>
<td>Total active energy(-)</td>
<td>2.8.0</td>
<td>XXXXXXX.XX</td>
</tr>
<tr>
<td>Total reactive energy</td>
<td>3.8.0</td>
<td>XXXXXXX.XX</td>
</tr>
<tr>
<td>Total reactive energy(-)</td>
<td>4.8.0</td>
<td>XXXXXXX.XX</td>
</tr>
<tr>
<td>Date</td>
<td>0.9.2</td>
<td>DD-MM-YY</td>
</tr>
<tr>
<td>Time</td>
<td>0.9.1</td>
<td>hh:mm:ss</td>
</tr>
<tr>
<td>Voltage-phase A</td>
<td>32.7.0</td>
<td>XXX.X</td>
</tr>
<tr>
<td>Voltage-phase B</td>
<td>52.7.0</td>
<td>XXX.X</td>
</tr>
<tr>
<td>Voltage-phase C</td>
<td>72.7.0</td>
<td>XXX.X</td>
</tr>
<tr>
<td>Current-phase A</td>
<td>31.7.0</td>
<td>XXX.XXX</td>
</tr>
<tr>
<td>Current-phase B</td>
<td>51.7.0</td>
<td>XXX.X</td>
</tr>
<tr>
<td>Current-phase C</td>
<td>71.7.0</td>
<td>XXX.XXX</td>
</tr>
<tr>
<td>Active power-phase A</td>
<td>21.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Active power-phase B</td>
<td>41.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Active power-phase C</td>
<td>61.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Reactive power-phase A</td>
<td>23.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Reactive power-phase B</td>
<td>43.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Reactive power-phase C</td>
<td>63.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Apparent power-phase A</td>
<td>29.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Description</td>
<td>Value</td>
<td>Unit</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Apparent power-phase B</td>
<td>49.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Apparent power-phase C</td>
<td>69.7.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Power factor-phase A</td>
<td>33.7.0</td>
<td>X.XXX</td>
</tr>
<tr>
<td>Power factor-phase B</td>
<td>53.7.0</td>
<td>X.XXX</td>
</tr>
<tr>
<td>Power factor-phase C</td>
<td>73.7.0</td>
<td>X.XXX</td>
</tr>
<tr>
<td>Frequency</td>
<td>14.7.0</td>
<td>XX.XX</td>
</tr>
<tr>
<td>AB phase angle</td>
<td>81.7.1</td>
<td>XXX.X</td>
</tr>
<tr>
<td>AC phase angle</td>
<td>81.7.2</td>
<td>XXX.X</td>
</tr>
<tr>
<td>Credit</td>
<td>c.51.0</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>Maximum power</td>
<td>1.35.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>3-phase unbalance</td>
<td>11.39.0</td>
<td>XX.XXXX</td>
</tr>
<tr>
<td>Meter No.</td>
<td>12.1.0</td>
<td>NNNNNNNNN</td>
</tr>
<tr>
<td>SGC No.</td>
<td>c.51.3</td>
<td>NNNNN</td>
</tr>
<tr>
<td>overdraft limit</td>
<td>c.51.1</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>Low credit alarm 1</td>
<td>c.51.6</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>Low credit alarm 2</td>
<td>c.51.7</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>Low credit alarm 3</td>
<td>c.51.8</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>total active energy of last 1 month</td>
<td>98.1.1</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>total active energy of last 2 month</td>
<td>98.1.2</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>total active energy of last 3 month</td>
<td>98.1.3</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>total active energy of last 4 month</td>
<td>98.1.4</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>total active energy of last 5 month</td>
<td>98.1.5</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>total active energy of last 6 month</td>
<td>98.1.6</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>Total active energy of yesterday</td>
<td>98.2.1</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>Total active energy of current month</td>
<td>1.9.0</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>Date of last recharge</td>
<td>99.3.1</td>
<td>DD-MM-YY</td>
</tr>
<tr>
<td>Time of last recharge</td>
<td>99.3.2</td>
<td>hh:mm:ss</td>
</tr>
<tr>
<td>recharging amount of last recharge</td>
<td>99.3.3</td>
<td>XXXXXX.XX</td>
</tr>
<tr>
<td>Total times of power-off</td>
<td>99.4.1</td>
<td>NNNNN</td>
</tr>
<tr>
<td>Total recharging amount</td>
<td>c.51.9</td>
<td>XXXXXX.XX</td>
</tr>
</tbody>
</table>
NOTE: Information in this document is subject to change without notice. The information is accurate at the time of printing (March, 2013) © Hexing Electrical