New ITS Component C
Following the OECD Plan to Climate Stabilization

BUILDING PARTNERSHIPS FOR ENERGY SECURITY

www.inogate.org
INOGATE New ITS Project

Following the OECD Plan to Climate Stabilization

by Larry Good, CEM, CEA, BEP, CSDP

Key Expert for Sustainable Energy

For INOGATE Ministerial Conference

2012
Overview

Section I. Two Problems

1. Climate Change
2. Energy Security

Section II. OECD Plan

Section III. Local Solutions
Section I

Two Problems

Problem #1: Climate Change

Problem #2: Energy Security
Problem #1: Climate Change

Scripps Inst. of Oceanography & OECD:

1. Atmospheric CO$_2$ level before industrial revolution: 280 ppm and stable (+/- 2%)
2. Today: 393 ppm CO$_2$, 440 ppm all GHGs
3. Increase: 2 ppm/yr

(Graph source: Gov. of Australia)
Climate Change, 21st century

From OECD:

- Beyond 450 ppm (all GHG)s: Tipping points
- Without intervention, will cross 450 ppm by 2030 (OECD).
Consequences

Beyond 450 ppm, > 50% probability:

• Average global atmospheric temperature will increase > 2°C (safe limit – Copenhagen Accord).

• Oceans begin releasing more CO₂ and absorbing less... beyond human ability to stop.

• Temperature will continue rising out of control.
The Cause

From IEA data

• Whole world burns 9,829 million tons - oil equivalent (Mtoe) of fossil fuel/yr.

• This produces about 48,500 Mtco$_2$e/yr.

• Annual increase: 700 Mtco$_2$e (1.45%).

• 3 biggest emitting sectors:
 – Electricity generation
 – Industry
 – Transport
By Country – Fossil Fuel

Calculated from IEA data:

<table>
<thead>
<tr>
<th>Country</th>
<th>Consumption (Mtoe/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>1.7</td>
</tr>
<tr>
<td>AZ</td>
<td>11.6</td>
</tr>
<tr>
<td>BY</td>
<td>26.1</td>
</tr>
<tr>
<td>GE</td>
<td>2.1</td>
</tr>
<tr>
<td>MD</td>
<td>2.5</td>
</tr>
<tr>
<td>UA</td>
<td>104</td>
</tr>
<tr>
<td>World</td>
<td>10,313</td>
</tr>
</tbody>
</table>

Largest are most industrialized countries.
By Country – Fossil Fuel

Calculated from IEA data:

<table>
<thead>
<tr>
<th>Country</th>
<th>Mtoe/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>KZ</td>
<td>74.2</td>
</tr>
<tr>
<td>KG</td>
<td>2.1</td>
</tr>
<tr>
<td>TJ</td>
<td>0.9</td>
</tr>
<tr>
<td>TM</td>
<td>21.3</td>
</tr>
<tr>
<td>UZ</td>
<td>43.1</td>
</tr>
</tbody>
</table>

Largest are most industrialized countries.
By Country - Emissions

Assuming emissions directly proportional to fossil fuel consumption, then by calculation:

<table>
<thead>
<tr>
<th>Country</th>
<th>Emissions (MtCO2e/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>7.9</td>
</tr>
<tr>
<td>AZ</td>
<td>54.8</td>
</tr>
<tr>
<td>BY</td>
<td>123</td>
</tr>
<tr>
<td>GE</td>
<td>9.8</td>
</tr>
<tr>
<td>MD</td>
<td>11.8</td>
</tr>
<tr>
<td>UA</td>
<td>488</td>
</tr>
<tr>
<td>World</td>
<td>48,500</td>
</tr>
</tbody>
</table>
By Country - Emissions

Assuming emissions directly proportional to fossil fuel consumption, then by calculation:

<table>
<thead>
<tr>
<th>Country</th>
<th>Emissions (MtCO2e/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KZ</td>
<td>349</td>
</tr>
<tr>
<td>KG</td>
<td>9.8</td>
</tr>
<tr>
<td>TJ</td>
<td>4.5</td>
</tr>
<tr>
<td>TM</td>
<td>100</td>
</tr>
<tr>
<td>UZ</td>
<td>203</td>
</tr>
</tbody>
</table>

Assumption is quite accurate in most cases.
Problem #2: Energy Security

• Most countries are energy-dependent.

• No country wants to be at the mercy of another for energy supply.

• Creates problems with national security, economy, sovereignty.
Section II

OECD Plan
OECD Plan, 2010-2100

Avoid tipping point (x) with 450 ppm limit.

Gradual reduction almost to carbon neutrality
OECD Plan, Step by Step

Simplified, shown by average in period

Four periods:
- 10 yr: 48,500 MtCO2e/yr
- 10 yr: 45,000 MtCO2e/yr
- 20 yr: 31,500 MtCO2e/yr
- 50 yr: 8,000 MtCO2e/yr
Solution: **Sustainable Development**

To stop global warming:

Replace increases in fossil fuel with sustainable energy.

- **Energy efficiency** stops unnecessary fossil fuel consumption.
- **Renewable energy sources** replace fossil fuel with carbon-neutral energy sources.
To accomplish OECD plan,

1. Change behavior.
2. Invest in technology.

The following slides present

1. A methodology to determine the right level of investment in sustainable energy technology.
2. A discussion about energy behavior.
What does technology cost?

- Prices vary widely.
- To demonstrate methodology, use median prices.
- To calculate for own country, use local prices.

<table>
<thead>
<tr>
<th>Typical unit costs</th>
<th>€/kWh</th>
<th>€/toe</th>
<th>€/tCO2e</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency</td>
<td>0.025</td>
<td>300</td>
<td>60</td>
</tr>
<tr>
<td>Renewable energy</td>
<td>0.085</td>
<td>1000</td>
<td>200</td>
</tr>
</tbody>
</table>

- Technologies cover all sectors
 - Energy
 - Industry
 - Buildings
 - Transportation
Calculate avoided emissions

Illustrative example:

• World needs to avoid increase of **700 MtCO₂e/yr**.

• Try method with 1/3 EE, 2/3 RES.

<table>
<thead>
<tr>
<th>MtCO₂e/yr</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>233</td>
<td>Energy efficiency</td>
</tr>
<tr>
<td>467</td>
<td>RES technologies</td>
</tr>
<tr>
<td>700</td>
<td>Total</td>
</tr>
</tbody>
</table>
Calculate world cost

<table>
<thead>
<tr>
<th>Avoided emissions (MtCO2e/yr)</th>
<th>Unit cost (€/tCO2e)</th>
<th>Annual investment (billion €/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>233</td>
<td>60</td>
<td>14 EE</td>
</tr>
<tr>
<td>467</td>
<td>200</td>
<td>93 RES</td>
</tr>
<tr>
<td>700</td>
<td>x</td>
<td>107 World Cost</td>
</tr>
</tbody>
</table>

(Repeat every year as economy grows.)
Cost of World Business as Usual?

- Usual annual world energy infrastructure investment: \(13,400\) billion € (unofficial ITS estimate)

- Cost of annual SE upgrades: \(107\) billion €

- Most of SE upgrades will repay their investments with profit.
Section III

Local solutions
About GHG Growth Rates

• OECD model: 1.45%/yr GHG growth rate.
• But 2008 crisis disrupted all development.
• To demonstrate methodology we need *post-crisis* GHG growth.
• Assume local GHG growth = GDP growth.
• Use World Bank post-crisis GDP data.
EU investment example

- Baseline emissions: 6,100 MtCO$_2$e/yr
- GDP increase: 3.7%
- 3.7% GHG increase = 230 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>billion €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>77 EE</td>
<td>x 60</td>
<td>= 5</td>
</tr>
<tr>
<td>153 RES</td>
<td>x 200</td>
<td>= 30</td>
</tr>
<tr>
<td>230 Total</td>
<td></td>
<td>= 35</td>
</tr>
</tbody>
</table>
Cost of EU Business as Usual?

• Usual annual EU cost of energy infrastructure investment: **2 600 billion €** (unofficial ITS estimate)

• Cost of SE annual upgrades: **35 billion €**

• Most of SE upgrades will repay their investments with profit.
Armenia Investment Example

- Baseline emissions: 7.9 MtCO$_2$e/yr
- GDP increase: 3.4%
- 3.4% GHG increase = 0.26 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>million €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09 EE</td>
<td>x 60</td>
<td>= 5</td>
</tr>
<tr>
<td>0.18 RES</td>
<td>x 200</td>
<td>= 35</td>
</tr>
<tr>
<td>0.27 Total</td>
<td></td>
<td>= 40</td>
</tr>
</tbody>
</table>
Cost of AM Business as Usual?

• Usual annual AM energy infrastructure investment: **2.8 billion €** (unofficial ITS estimate)

• Cost of SE annual upgrades: **0.04 billion €**

• GDP growth rate is good indicator of GHG increase in Armenia.
Azerbaijan Investment Example

- Baseline emissions: 55 MtCO$_2$e/yr
- GDP increase: 3%
- 3% GHG increase = 1.7 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>million €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6 EE</td>
<td>x 60</td>
<td>= 33</td>
</tr>
<tr>
<td>1.1 RES</td>
<td>x 200</td>
<td>= 219</td>
</tr>
<tr>
<td>1.7 Total</td>
<td></td>
<td>= 252</td>
</tr>
</tbody>
</table>
Cost of AZ Business as Usual?

• Usual annual AZ energy infrastructure investment: **8.4 billion €**
 (unofficial ITS estimate)

• Cost of SE annual upgrades: **0.25 billion €**

• Most of SE upgrades will repay their investments with profit.
Belarus Investment Example

- Baseline emissions: 123 MtCO$_2$e/yr
- GDP increase: 6.5%
- 6.5% GHG increase = 8.0 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>billion €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.7 EE</td>
<td>x 60</td>
<td>= 0.2</td>
</tr>
<tr>
<td>5.3 RES</td>
<td>x 200</td>
<td>= 1.1</td>
</tr>
<tr>
<td>8.0 Total</td>
<td></td>
<td>= 1.3</td>
</tr>
</tbody>
</table>
Cost of BY Business as Usual?

- Usual annual BY energy infrastructure investment: **16.9 billion €** (unofficial ITS estimate)
- Cost of SE annual upgrades: **1.3 billion €**
- Belarus may reach goal to reduce GDP energy intensity to level of advanced countries with similar climate in 14 years.
- 2010: DK - 0.1 Mtoe/billion €, steady BY - 0.6 Mtoe/billion €, falling 7%/yr
Georgia Investment Example

- Baseline emissions: 9.8 MtCO$_2$e/yr
- GDP increase: 6.6%
- 6.6% GHG increase = 0.65 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>million €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.22 EE</td>
<td>x 60</td>
<td>= 13</td>
</tr>
<tr>
<td>0.43 RES</td>
<td>x 200</td>
<td>= 86</td>
</tr>
<tr>
<td>0.65 Total</td>
<td></td>
<td>= 99</td>
</tr>
</tbody>
</table>
Cost of GE Business as Usual?

- Usual annual GE energy infrastructure investment: 3.5 billion €
 (unofficial ITS estimate)

- Cost of SE annual upgrades: 0.099 billion €

- After all SHPP exploited, need new method to hold down energy intensity while GDP grows.
Moldova Investment Example

- Baseline emissions: 11.8 MtCO$_{2}$e/yr
- GDP increase: 6.8%
- 6.8% GHG increase = 0.8 MtCO$_{2}$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_{2}$e/yr</th>
<th>€/tCO$_{2}$e</th>
<th>million €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.27 EE</td>
<td>x 60</td>
<td>= 16</td>
</tr>
<tr>
<td>0.53 RES</td>
<td>x 200</td>
<td>= 106</td>
</tr>
<tr>
<td>0.80 Total</td>
<td></td>
<td>= 122</td>
</tr>
</tbody>
</table>
Cost of MD Business as Usual?

- Usual annual MD energy infrastructure investment: 1.3 billion € (unofficial ITS estimate)

- Cost of SE annual upgrades: 0.12 billion €

- Before crisis, Moldova energy consumption was falling as GDP was rising.
Ukraine Investment Example

- Baseline emissions: 488 MtCO$_2$e/yr
- GDP increase: 4.7%
- 4.7% GHG increase = 22.7 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>billion €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.6 EE</td>
<td>x 60</td>
<td>0.4</td>
</tr>
<tr>
<td>15.1 RES</td>
<td>x 200</td>
<td>3.0</td>
</tr>
<tr>
<td>22.7 Total</td>
<td></td>
<td>3.4</td>
</tr>
</tbody>
</table>
Cost of UA Business as Usual?

- Usual annual UA energy infrastructure investment: **25.6 billion €**
 (unofficial ITS estimate)

- Cost of SE annual upgrades: **3.4 billion €**

- UA needs to produce SREAP (energy action plan) for EnC.

- SREAP may be based on OECD plan.
Kazakhstan Investment Example

- Baseline emissions: 349 MtCO₂e/yr
- GDP increase: 7.4%
- 7.4% GHG increase = 25.8 MtCO₂e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO₂e/yr</th>
<th>€/tCO₂e</th>
<th>billion €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.6</td>
<td>EE</td>
<td>60</td>
</tr>
<tr>
<td>17.2</td>
<td>RES</td>
<td>200</td>
</tr>
<tr>
<td>25.8</td>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Cost of KZ Business as Usual?

- Usual annual KZ energy infrastructure investment: **26.4 billion €**
 (unofficial ITS estimate)

- Cost of SE annual upgrades: **3.9 billion €**

- Most of SE upgrades will repay their investments with profit.
Kyrgyzstan Investment Example

- Baseline emissions: 9.8 MtCO$_2$e/yr
- GDP increase: 2.8%
- 2.8% GHG increase = 0.28 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>million €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.09 EE</td>
<td>x 60</td>
<td>= 5.5</td>
</tr>
<tr>
<td>0.18 RES</td>
<td>x 200</td>
<td>= 37.0</td>
</tr>
<tr>
<td>0.28 Total</td>
<td></td>
<td>= 42.5</td>
</tr>
</tbody>
</table>
Cost of KG Business as Usual?

- Usual annual KG of energy infrastructure investment: **1.2 billion €**
 (unofficial ITS estimate)

- Cost of SE annual upgrades: **0.04 billion €**

- Most of SE upgrades will repay their investments with profit.
Tajikistan Investment Example

- Baseline emissions: 4.5 MtCO$_2$e/yr
- GDP increase: 7.0%
- 7.0% GHG increase = 0.3 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>million €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 EE</td>
<td>x 60</td>
<td>= 6.3</td>
</tr>
<tr>
<td>0.21 RES</td>
<td>x 200</td>
<td>= 41.7</td>
</tr>
<tr>
<td>0.31 Total</td>
<td></td>
<td>= 48.0</td>
</tr>
</tbody>
</table>
Cost of TJ Business as Usual?

- Usual annual TJ energy infrastructure investment: 0.9 billion €
 (unofficial ITS estimate)

- Cost of SE annual upgrades: 0.05 billion €

- Most of SE upgrades will repay their investments with profit.
Turkmenistan Investment Example

- Baseline emissions: 100 MtCO$_2$e/yr
- GDP increase: 9.6%
- 9.6% GHG increase = 9.6 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>billion €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2</td>
<td>EE 60</td>
<td>0.2</td>
</tr>
<tr>
<td>6.4</td>
<td>RES 200</td>
<td>1.3</td>
</tr>
<tr>
<td>9.6</td>
<td>Total</td>
<td>1.5</td>
</tr>
</tbody>
</table>
Cost of TM Business as Usual?

- Usual annual TM energy infrastructure investment: 1.1 billion € (unofficial ITS estimate)
- Cost of SE annual upgrades: 0.04 billion €
- Most of SE upgrades will repay their investments with profit.
Uzbekistan Investment Example

- Baseline emissions: 203 MtCO$_2$e/yr
- GDP increase: 8.4%
- 8.4% GHG increase = 17.0 MtCO$_2$e/yr
- Illustrative investment mix to avoid increase:

<table>
<thead>
<tr>
<th>MtCO$_2$e/yr</th>
<th>€/tCO$_2$e</th>
<th>billion €/yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.7 EE</td>
<td>x 60</td>
<td>= 0.3</td>
</tr>
<tr>
<td>11.3 RES</td>
<td>x 200</td>
<td>= 2.3</td>
</tr>
<tr>
<td>17.0 Total</td>
<td></td>
<td>= 2.6</td>
</tr>
</tbody>
</table>
Cost of UZ Business as Usual?

- Usual annual UZ energy infrastructure investment: **8.2 billion €**
 (unofficial ITS estimate)

- Cost of SE annual upgrades: **2.6 billion €**

- Most of SE upgrades will repay their investments with profit.
Return on Investment

Example:

- Georgian policy: Maximize use of all available hydropower resources.

 - Approximate ROI: 13%
 - Approximate IRR: 10%

- These numbers are acceptable in GE.

- Therefore, higher are more acceptable.
Installed Costs of SE Electricity Capacity

source: ITS informal research
Considerations

• Repeat investment *every year* to offset growth.

• Investments may come from
 – Domestic private industry
 – International private investors
 – International finance institutions
 – Municipal/regional budget
 – National budget

• Determine
 – investment potential by technology
 – unit cost by technology
 – energy consumption growth rate
Energy Security

• Although most investments will return more than they cost, others will not.

• Return is not the only criterion.

• Military budgets do not measure return.

• Governments spend whatever is necessary for their national security.

• Energy security is the same.
Every country’s goal: *Maximize national income!*

- Every kWh not wasted at home is a kWh that can be sold abroad.
Changing Behavior

• Behavior is learned.

• Leaders can motivate society to stop waste.

• With motivation, people will
 – Close doors in winter.
 – Turn off lights by day.
 – Drive further on less petrol.

• Changing behavior costs LESS MONEY than the cheapest SE technology!
How to change behavior?

- Building codes, vehicle codes (policy)
- Energy audit requirements (policy)
- Public awareness campaigns
- Driver training to save fuel (and lives)
- Appliance demonstration centers
- Public school curricula (children influence parents)
Challenge: Strong Leadership

- Take your foot off the accelerator, the car stops.
- If leaders fall asleep, benefits stop.
- Policies need constant enforcement.
- Awareness raising must be continuous.
Summary

• Investments
 – Reduce GDP energy intensity
 – Increase productivity
 – Improve energy security
 – Reduce global warming
 – Create jobs

• Choose greatest ROIs first!

• Changing citizen behavior
 – Reduces investment cost
 – Requires long term commitment
Thank you for your attention!

More information:
EuropeAid-INOGATE@ec.europa.eu
Secretariat.kiev@inogate.org

Visit web portal: www.inogate.org

Larry Good, Key Expert, Sustainable Energy
l.good@inogate.org
Tel: +995 557 528 468